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A Overview

When quantum particles are used to transmit information, one can expect that, as
with classical communication, noise in the channel will affect the fidelity of the trans-
mission. This is true whether the particles are used to transmit quantum or classical
information. Similar concerns arise in quantum computation when the noise due to
interactions with the environment gives rise to errors.
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This project has been concerned with the analysis of mathematical models of
noise for qubit channels, with the capacity of qubit channels used to transmit classical
information, and with exchange errors in quantum computation. Some related results
on entropy inequalities were also obtained.

A large part of the project was devoted to questions about the capacity of channels
used to transmit classical information, particularly the question of whether or not en-
tangled inputs and/or measurements can increase the capacity. Questions have been
raised recently as to whether or not quantum channels offer sufficient advantages to
justify their use solely for transmission of classical information without prior entan-
glement. To some extent this skepticism is justified by results obtained in this project
which showed no advantages for unital qubit channels and no advantages to entangled
inputs when only product measurements are available. Such negative results are also
valuable.

Moreover, results about situations when entangled inputs and/or measurements do
increase the capacity of quantum channels contribute to our understanding of the role
of entanglement in other situations. Finally, even when qubits are used to transmit
quantum information within a system, such as a quantum computer, that information
is not accessible until after a measurement has been performed. The entire process
of input to output measurement in the computational basis can then be regarded as
the transmission of classical information through a very complex composite channel.
Thus the results of this project contribute to the much larger process of understanding
the full spectrum of different types of quantum information systems.

In a somewhat different and unanticipated direction, the P.I. considered a pro-
posed method for adiabatic computation. This work, which is described below, is the
result of interest generated by hearing a report at the annual QCPR program review
in August, 2001.

B Summary of Results

B.1 Analysis of Noise Maps

Noise in quantum information theory, whether the system is a communication chan-
nel, a quantum computer, or some other type of quantum information processor is
described by a linear map on density matrices which has two mathematical prop-
erties known as completely positive and trace preserving. Such maps have been
called “super-operators,” “quantum operations,” “stochastic maps” and often, sim-
ply, “channels” in the literature. Completely positive maps can always be written
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[34, 46] (albeit non-uniquely) in the form

Φ(ρ) =
∑
k

Ak ρA
†
k (1)

where ρ is a density matrix and the requirement that Φ be trace-preserving is equiv-
alent to the condition

∑
k A
†
kAk = I.

Early work on channel capacity and related questions used a relatively small set
of examples, defined via their Kraus operators Ak using (1). King and the P.I. [32]
noted that (up to rotations) any qubit channel could be written as

Φ : ρ = 1
2
[I + w·σ] �→ 1

2

[
I +

∑
k

(tk + λkwk)σk

]
= Φ(ρ) (2)

where σj, (j = 1, 2, 3) denote the Pauli matrices and w is a vector in R3. Thus, a
stochastic map contracts the Bloch sphere to an ellipsoid whose axes have lengths
λk and for which the vector t (with components tk) describes the translation of the
center from the origin. However, not every possible ellipsoid arises as the image of a
stochastic map. For unital maps (t = 0) Algoet and Fujiwara [19] showed that the λk
must satisfy (λ1±λ2)

2 ≤ (1±λ3)
2 and also obtained some results when two of the tk

are zero. In [58], the Szarek, Werner and the P.I. obtained a complete set of necessary
and sufficient inequalities on the parameters tk and λk using Choi’s result [10] that a
map is completely positive if and only if its action on a maximally entangled Bell state
is positive semi-definite. In addition, we gave an explicit form for extreme channels,
which are equivalent to the optimal cloning channels discovered independently by Niu
and Griffiths [47] and by Rieffel and Zalka [59]. This work has given us a much richer
class of examples with which to study channel capacity, leading to a number of new
results some of which are discussed below.

In [24] Holevo introduced a special class of channels of the form

Φ(ρ) =
∑
k

Rk TrFkρ (3)

where each Rk is a density matrix and the {Fk} form a POVM. Holevo also introduced
two subclasses and called a channel

• classical-quantum (CQ) if each Fk = |k〉〈k| in the POVM is a one-dimensional
projection,

• quantum-classical (QC) if
∑

k Rk = I and each density matrix Rk = |k〉〈k| is a
one-dimensional projection.
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Holevo [23] gave examples of particular CQ maps for which entangled measurements
can increase the capacity of the channel. Horodecki and Shor [26] recently observed
that channels of the form (3) are entanglement breaking in the sense (B) below, and
Shor [68] used this to show that entangled inputs cannot further increase the capacity
of such channels.

Because it is important to understand the distinction between channels which
break entanglement, those which preserve certain types of entanglement, and those
which may be enhanced by entanglement (in the sense that entangled inputs can
increase capacity), the P.I. undertook a more detailed study of entanglement breaking
channels. In [56] it was shown that, for qubit channels, the following are equivalent

(A) Φ is a Holevo channel, i.e., Φ can be written in the form (3),

(B) Φ is entanglement breaking, i.e., (I ⊗ Φ)(Γ) is always separable (for Γ an arbi-
trary, possibly entangled, state on the tensor product space).

(C) Φ ◦ T is completely positive, where T (ρ) = ρT is the transpose.

(D) Φ has a sign change property (i.e., when Φ is written in the canonical form (2)
and any one of the λk → −λk the resulting map is also completely positive).

(E) Φ is in the convex hull of CQ channels.

Thus, the properties of qubit entanglement breaking channels are now well under-
stood. The P.I. also showed that, roughly speaking, entanglement breaking channels
are those which are extremely noisy. For example, any qubit channel which maps the
Bloch sphere into a plane is entanglement breaking.

For channels in d-dimensions most of the equivalences above extend to implications
in only one direction. This is because the so-called partial transpose operation does
not completely distinguish between entangled and product states of bipartite systems
in higher dimension. Thus, a map may break some types of entanglement but preserve
others. The results obtained thus far are described in Section 3 of [56]. (Recently P.
Shor [67] informed the P.I. that he had found a counter-example to the conjecture
that (A) implies (E) for d = 3.) An understanding of entanglement breaking maps
for d > 2 seems to be closely related to understanding the different types of bipartite
entanglement in higher dimensions.

B.2 Channel Capacity

Shannon introduced the notion of capacity, which is roughly the maximum rate of
reliable transmission of information per bit. In quantum information theory this
concept can be generalized in several ways [6], depending on whether quantum or
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classical information is transmitted and on the resources available. When quantum
particles are used to transmit information, the noise is represented by the action of
a stochastic map, Φ. The capacity of a memoryless channel, i.e., one for which the
noise on multi-bit signals is Φ⊗ Φ . . .⊗ Φ, need not necessarily be additive, because
of the possibility of using entangled inputs and/or entangled measurements on the
outputs.

A simple expression for the “classical capacity”, i.e., the optimal capacity of a
memoryless quantum channel to transmit classical information has not yet been found.
However, such expressions are known if the inputs are restricted to product states;
we denote these by CPP (Φ) = CShan(Φ) or CPE(Φ) = CHolv(Φ) depending on whether
the measurements are required to be products or permitted to be entangled. CEP (Φ)
denotes the capacity when inputs are unrestricted, but measurements are required
to be products, and CEE(Φ) is the unrestricted capacity for transmitting classical
information, i.e., the “classical capacity” of a quantum channel. The bound CPP (Φ) ≤
CHolv(Φ) is a consequence of Holevo’s 1973 bound [21] on the accessible information.
Much later, Holevo [23] and (independently) Schumacher and Westmoreland [60, 61]
showed that CPE(Φ) = CHolv(Φ). Although, one can easily see that CPP (Φ) ≤
{CPE(Φ), CEP (Φ)} ≤ CEE(Φ), little was known about CPE(Φ) or its relation to
CEP (Φ) until the spring of 1999, when the C. King and the P.I. [33], proved that
CPP (Φ) = CPE(Φ). This result, which means that when only product measurements
are used entangled inputs cannot increase the capacity, can be extended to a more
general class of “sequential product measurements”. (This result was also obtained
independently by P. Shor [66] and by A. Holevo [25], both of whom proved the
extended result and used the P.I.’s observation that one could regard the noise as
acting on the measurement through the adjoint of Φ.) Thus, one now knows that

CPP (Φ) = CPE(Φ) ≤ CEP (Φ) ≤ CEE(Φ). (4)

Moreover, one knows that the first inequality can be strict and that this is the generic
situation for non-unital channels, i.e., maps for which Φ(I) �= I. The question of
whether or not equality always holds in CEP (Φ) ≤ CEE(Φ) is one of the major open
questions and is closely related to the question of whether or not the Holevo capacity is
always additive, i.e., does equality always hold in CHolv(Φ⊗Ω) ≥ CHolv(Φ)+CHolv(Ω)
or is superadditivity possible? Both questions can be rephrased as asking if entangled
inputs can ever enhance the classical capacity of a quantum channel when the noise
acts independently on subsystems.

In the special case of unital qubit maps, King and the P.I. [32] observed that
the additivity of CHolv(Φ) is equivalent to the additivity of minimal entropy, a long-
standing conjecture of P. Shor [67]. In [32] King and the P.I. gave strong evidence
for the latter conjecture by showing that for unital qubit maps entangling states of
minimal entropy could not decrease the entropy below that of the optimal product.
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We also gave the first result on additivity of another measure of purity and addi-
tional evidence in support of the entropy conjecture in other situations. Building on
this work, and related conjectures [2] about other measures of purity, King [28, 29]
succeeded in proving the additivity of both minimal entropy and Holevo capacity in
a number of special cases, including situations in which one of the maps is a unital
qubit channel and the other is completely arbitrary. (The P.I. played a minor role by
contributing to the lemma in the Appendix of [28].) Thus, at least for transmission
of classical information, qubit channels with unital stochastic maps have little advan-
tage over classical channels because the capacity is optimized when a particular pair
of orthogonal inputs is used to represent 0,1.

For practical applications, it is important to know the actual inputs which max-
imize the capacity. Fuchs [18] was the first to observe that there were situations
in which maximizing the Holevo capacity required the use of non-orthogonal inputs,
and it was subsequently realized [32, 62] that this behavior is generic for non-unital
channels. Recently, the P.I. (with C. King and M. Nathanson) [31] showed that there
are also situations in which qubit channels require three (non-orthogonal) inputs to
maximize the Holevo capacity, i.e., even for tensor products of two-level quantum
systems, entangled measurements can best distinguish between alphabets of product
inputs when these products are formed from three non-orthogonal states {ρ0, ρ1, ρ2}.

Although the increase in capacity associated with 3- and 4-input channels and with
superadditivity, is likely to be small, there are still potential practical applications.
The need for three inputs arises from a competition between a QC capacity with an
asymmetric probability distribution, and a CQ capacity with a 50/50 distribution. It
may be possible to exploit the flatness near the optimum to use a variety of alphabet
distributions with only a small sacrifice in capacity.

It is noteworthy that 3-input channels were not found in the very extensive nu-
merical searches for channels with other properties, such as superadditivity of the
Holevo capacity. The construction in [31] exploits a symmetry which results in an
essentially planar image which cannot require more than 3 inputs. One would ex-
pect that 4-input qubit channels also exist and that these would be good candidates
for superadditivity. However, they seem to be rare events which are difficult to find
because one must break the symmetry used to construct 3-input examples.

Moreover, in retrospect, many of the numerical searches for superadditivity were
futile because they studied examples which are now known to satisfy general additivity
theorems [29, 30, 68]. Using the results of [29, 56, 58, 68] it is now possible to conduct a
much more focused search. In work this summer [12] many additional 3-input channels
were found with quite different characteristics than those of [31], but 4-input qubit
channels remain elusive. (By fundamental convexity theorems, qubit channels never
require more than 4 inputs.) The P.I. suspects that 4-input qubit channels do exist,
but are rare.
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In any case, one should not draw any conclusions about superadditivity until
such 4-input qubit channels are found and tested. Recently, two groups [27, 68]
found connections between the additivity of the Holevo capacity and that of the
entanglement of formation. Hence, this question has implications well beyond any
small increase in capacity which may exist. Finding channels for which entangled
inputs enhance capacity, may lead to the discovery of additional situations in which
entanglement enhances information processing.

B.3 Equality Conditions for Entropy Inequalities

An important tool in quantum information theory is the strong-subadditivity (SSA)
property of quantum mechanical entropy, i.e.,

S(ρ123) + S(ρ2) ≤ S(ρ12) + S(ρ23) (5)

where S(ρ) = −Trρ log ρ denotes the von Neumann entropy of the density matrix ρ
and the subscripts refer to subsystems. This property, which was proved by Lieb and
the P.I. [42] is closely related to the joint convexity of relative entropy

H(ρ, γ) = Trρ log ρ− Trρ log γ (6)

where ρ, γ are density matrices with ker(γ) ⊂ ker(ρ). SSA can also be used to derive
the monotonicity of relative entropy under stochastic maps which, in turn, can be used
to prove the Holevo bound [21] for accessible information. Hence, there has been some
interest in knowing the conditions for equality in SSA and related inequalities. The
P.I. showed [55] that equality holds in (5) if and only if

log ρ123 − log ρ12 = log ρ23 − log ρ2 (7)

which can be regarded as a kind of quantum Markov condition. (A different form
of this result was obtained independently by Petz [49, 51].) The P.I. also obtained
conditions for equality in the joint convexity and monotonicity of relative entropy
under stochastic maps. Because the monotonicity of relative entropy can be used to
give a simple proof of the Holevo bound on accessible information, the results of [55]
yield a new short proof that the this bound can be achieved only when the density
matrices in the upper bound all commute.

This paper also gives a simple, self-contained proof of SSA, following the original
strategy in [42] but using Epstein’s elegant proof [14] that the map A → Tr eK+logA

is concave in A rather than Lieb’s [41] original proof of this concavity. The paper is
intended to make the proofs of important entropy inequalities accessible to a wide
audience without requiring a high level of mathematical sophistication.
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B.4 Pauli Exchange Errors

Most discussions of quantum error correction assume, at least implicitly, that errors
result from interactions with the environment and that single qubit errors are much
more likely than two qubit errors. Most of the quantum computing literature also
does not make explicit the spatial component of the qubit wave function and thus
seems to ignore the Pauli exclusion principle and permutational symmetry of states
describing multi-qubit systems. In [53] the P.I. showed, by considering the full wave
function, that interactions between qubits of identical particles can give rise to a type
of error, not seen classically, in which a single exchange error can affect two qubits.
An explicit 9-qubit code was constructed [53] which can handle both Pauli exchange
errors and all one-bit errors.

Subsequently, Lidar, et al [36] noted that their DFS (Decoherence Free Subspace)
codes were resistant to this type of error, because exchange errors on physical qubits
bits acted as single Pauli errors on their logical bits. Turning this idea around, they
[37, 38] observed that exchange interactions could be used for universal computation
in the DFS scheme. Then a larger group [40] observed that exchange interactions
could also be used as to implement a set of universal gates in other situations.

There is some question as to whether exchange errors will be important in physical
realizations of practical quantum computers, or whether, instead, such computers will
be designed to be sufficiently robust to use exchange interactions to implement gates.
In either case, it appears that [53] attracted attention to a topic which (at least in
some small way) affected subsequent developments.

Moreover, the Berkeley group [37] observed that some DFS codes could be re-
garded as a different type of stabilizer code and the P.I. proposed [53] the construction
of more powerful permutationally invariant codes involving higher dimensional repre-
sentations of the the symmetric group. Recently, the P.I. realized that the proposal in
[53] was too strong, but that both the DFS and permutationally invariant codes can
be regarded as stabilizers for certain non-Abelian groups. The P.I.’s 9-bit code in [53]
is “non-additive” in the sense of not arising as the stabilizer of an Abelian subgroup
of the Pauli group. The P.I. has now begun to examine the more general question of
stabilizer codes associated with non-Abelian groups (not necessarily contained within
the Pauli group). Such codes may be useful for adaptive error correction in quan-
tum computers which are robust in some ways, but vulnerable to certain types of
correlated errors.

B.5 Adiabatic Quantum Computation

Recently Fahri, et al [15, 16] proposed using adiabatic evolution to construct a type
of analogue quantum computer and suggested that such computers might be able to
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solve NP-complete problems efficiently. However, the only evidence for their claim
is based upon extrapolation from small n using numerical simulations of adiabatic
quantum evolution. A proof (or refutation) of their claim would require rigorous
analysis of the behavior of the lowest eigenvalue gap as n increases. But this has only
been done for very simple models.

The P.I. has shown [57] that for a large class of Hamiltonians, including those
proposed for adiabatic quantum computation, the ground state is unique. This ex-
plains the eigenvalue gaps that have been observed numerically, but says nothing at
all about their behavior as n increases.

Several groups [1, 13, 69, 15] have studied adiabatic searches using the Grover
oracle to construct the final Hamiltonian. They have observed that, although the gap
decreases exponentially, knowledge of its location does permit some speed-up of the
algorithm. In this analysis, the reduction to an essentially two-dimensional problem,
which plays a critical role in Grover’s original algorithm is essential.

In a completely different approach, the P.I. [57] has observed that because only
the ground state plays a role, an adiabatic search can be performed using a more
general Hamiltonian than that associated with the Grover oracle G (which has a very
high degeneracy because of the two-dimensional structure). In particular, replacing
any final H1 by GH1, where G multiplies the “target” state by −1, permitting adia-
batic quantum computation to perform an unsorted search. There are three possible
situations

(A) Both the problem encoded in H1 and an unsorted search can be performed in
polynomial time, contradicting the conventional wisdom [4, 46] that one can
not improve on the O(2n/2) = O(

√
N) behavior of Grover’s algorithm.

(B) Both the problem encoded in H1 and an unsorted search require exponential
time, refuting Fahri, et al’s claim of efficient solution of hard problems.

(C) The simple process of moving a single excited state below the ground state,
equivalent to subtracting a multiple of a one-dimensional projection from H1,
drastically alters the computational complexity of finding the ground state by
adiabatic quantum computation.

Fahri and Guttman [17] have given a simple model problem in which situation
(C) holds. However, this problem also has a high level of symmetry which prevents
crossings and gives an eigenvalue gap that is O(1) precisely because it permits a high
level of persistent degeneracy (with only n + 1 distinct eigenvalues). Moving just
one excited state breaks much of this symmetry. However, a preliminary analysis
suggests that the existence of a slowly decreasing eigenvalue gap requires a symmetry
(or other structure) which allows sufficient degeneracy (or squeezing) for 2n states to
have eigenvalues in the range of [0, n] with at least one gap that decreases slowly.
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Vazirani [69, 70] has pointed out that situation (A) is not necessarily precluded by
the standard arguments because the construction of the final Hamiltonian in adiabatic
quantum computation seems to involve a more complex type of oracle. Indeed, it has
recently been observed [11, 45] that improvements on Grover’s algorithm may be
possible in other situations.

The resolution of the efficiency of adiabatic quantum computation for hard prob-
lems is likely to require a different approach; one possibility, building on ideas from
random Schrödinger operators is discussed briefly in [57].
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